
Verification of Model-based Software
Systems for Space Applications

Automatic generation of tests for planner

•  Goal:
–  automatically generate test cases for

planners so that we can test planning
domains against flight rules

•  Contributors:
–  Franco Raimondi (University College of 
London, UK) 

–  Charles Pecheur (Université Catholique 
de Louvain, Belgium) 

–  Guillaume Brat (USRA-RIACS, USA) 
•  Funding: 
–  NASA Exploration Technology 
Development Program 

–  Autonomy for Operations project 

The EUROPA planning framework

•  Class library and tool set for building
planners (and/or schedulers) within a
Constraint-based Temporal Planning
paradigm.
–  explicit notion of time
–  deep commitment to a constraint-based

formulation of planning problems

•  Applications
– MAPGEN: used on MER mission
– SACE: used for ISS solar arrays

New Domain Description
Language

•  NDDL roles
–  Describe domain types and domain rules

•  Includes activity types, subgoal rules, resources, limits, constraints,…
–  Describe instantiations of activities, resources, constraints,…

class Path {
 string name;
 Loc from;
 Loc to;
 float cost;
 Path(string name,
 Loc from,
 Loc to,
 float cost) {
 name = name;
 from = from;
 to = to;
 cost = cost;
 }
}

class Rover {
 predicate At {
 Loc location;
 }
 predicate Going {
 Loc from;
 Loc to;
 neq(from, to);
 }
}

Rover::Going{
 met_by(object.At at_before);
 eq(at_before.location, from);
 meets(object.At at_after);
 eq(at_after.location, to);

 Path p : {
 eq(p.from, from);
 eq(p.to, to);
 };

 starts(Battery.change tx);
 eq(tx.quantity, p.cost);
}

Rover Flight Rules in LTL
FR1. The Rover Battery State of charge

cannot go below X

G (battery::state(level) and level ≥ X)

FR2. All Instruments must be stowed
when moving

G (SPIRIT.navigator::moving(*,*)
implies
SPIRIT.instrument::stowed())

FR3. The Rover may only navigate along
designated paths

G(SPIRIT.navigator::going(from,to)
implies
(from=FROM1 and to=TO1) or (...)
or ...)

Process

•  Modeling flight rules in appropriate language
– We started with LTL (linear temporal logic), but are

considering others
– Flight rules will likely be expressed in plain English

•  Generate coverage conditions that cover flight
rules according to “unique cause” criterion
–  “Unique cause” is an extension of the commonly used

MC/DC coverage criterion mandated by the FAA
•  Generate test case in the form of Europa goals

(or partial plans) using the coverage conditions

Test case generation for NDDL
IDE

Editor
Flight
Rules

(English)

Flight
Rules

(LTL, ATL)

Domain
Model

(NDDL)

Test
Case
Generator

Expand
Flight
Rules

(patterns)

Coverage
Conditions

(set of
LTL, ATL)

Generate

Translate

Test
Suite

(NDDL cmds
= goals

= partial plans)

EUROPA

Plans
FAIL

Unique First Cause Coverage
•  Idea: extend MC/DC testing)mandated by

FAA for avionics) to requirement-based
testing

•  A test suite achieves UFC coverage of a
set of requirements expressed as
temporal formulae, if:

1.  Every basic condition in any formula has
taken on all possible outcomes at least
once

2.  Each basic condition has been shown to
affect the formula’s outcome as the unique
first cause

•  A condition a is the unique first cause
(UFC) for φ along a path π if, in the first
state along π in which φ is satisfied, it is
satisfied because of a.

